Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(4): 118, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478162

RESUMO

Can nano-zero-valent iron, synthesized using oak leaf extract, be the key solution for water preservation, efficiently removing heavy metal ions and phosphate anions simultaneously? This research unveils how this technology not only promises high efficiency in the remediation of water resources, but also sets new standards for environmentally friendly processes. The high antioxidant capacity and high phenol content indicate suggest the possibility of oak-nZVI synthesis using oak leaf extract as a stable material with minimal agglomeration. The simultaneous removal of Cd and phosphates, as well as and Ni and phosphates was optimized by a statistically designed experiment with a definitive screening design approach. By defining the key factors with the most significant impact, a more efficient and faster method is achieved, improving the economic sustainability of the research by minimizing the number of experiments while maximizing precision. In terms of significance, four input parameters affecting process productivity were monitored: initial metal concentration (1-9 mg L-1), initial ion concentration (1-9 mg L-1), pH value (2-10), and oak-nZVI dosage (2-16 mL). The process optimization resulted in the highest simultaneous removal efficiency of 98.99 and 87.30% for cadmium and phosphate ions, respectively. The highest efficiency for the simultaneous removal of nickel and phosphate ions was 93.44 and 96.75%, respectively. The optimization process fits within the confidence intervals, which confirms the assumption that the selected regression model well describes the process. In the context of e of the challenges and problems of environmental protection, this work has shown considerable potential and successful application for the simultaneous removal of Cd(II) and Ni(II) in the presence of phosphates from water.


Assuntos
Metais Pesados , Nanopartículas , Poluentes Químicos da Água , Cádmio , Água , Fosfatos , Poluentes Químicos da Água/química , Metais Pesados/química , Nanopartículas/química , Íons , Extratos Vegetais , Adsorção
2.
Materials (Basel) ; 16(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049011

RESUMO

This paper examines the impact of the CO2 laser parameters on the tensile strength, which is one of the most important properties of paper packaging in the process of cutting paper material. The study was performed on a paper material sample Fbb Board/Ningbo Spark C1S Ivory Board by examination of the influence of four independent variables: paper material grammage, cutting speed, laser power, and resolution on the tensile strength by using definitive screening design. Optimum process conditions of four variables that maximize the tensile strength were predicted and validated accordingly. Results confirm that laser power, paper material grammage, and cutting speed are the main process parameters that mostly affect the tensile strength. Besides individual parameters, two statistically significant interactions were obtained: laser power and cutting speed, and cutting speed and laser resolution. Maximum tensile strength values (20.37 N/mm) were achieved using the laser power of 60.6%, cutting speed of 3.24%, resolution of 2500 Hz, and a paper material grammage of 326.85 g/m2. With laser power at middle values and at a lower speed, a maximum tensile strength value can be obtained. Increasing the laser power and cutting speed will produce a slight lowering of tensile strength.

3.
Environ Technol ; : 1-20, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36448931

RESUMO

The main challenges to overcome within the Fenton process are the acidic pH as an optimal reaction condition, sludge formation in neutral pH medium and high toxicity of treated printing wastewater due to the generation of contaminating by-products. This research discusses the catalytic activity of homogeneous (FeSO4/H2O2) and heterogeneous (Fe2(MoO4)3/H2O2) Fenton processes in treatment of Yellow azo printing dye in synthetic aqueous solution and real printing effluent, with an integration of adsorption on functionalized biochar synthesized from wild plum kernels. The definitive screening design (DSD), was used to design the experiment. Independent variables were initial dye concentration (20-180 mg L-1), iron concentration (0.75-60 mg L-1), pH (2-10) and hydrogen peroxide concentration (1-11 mM). Higher decolourization efficiency of 79% was obtained within homogeneous Fenton treatment of printing wastewater, in comparison to heterogeneous Fenton treatment (54%), after a reaction time of 60 min. Same trend of mineralization degree was established: COD removal was 59% and 33% for homogeneous and heterogeneous Fenton process, respectively. The application of adsorption treatment has achieved significant advantages in terms of toxicity reduction (95%) and decolourization efficiency (90% of TOC removal and 22% of dye removal) of treated samples, even at neutral pH medium. Degradation mechanisms within Fenton and adsorption processes were proposed based on the qualitative gas chromatography/mass spectrometry analysis, physico-chemical properties of dye degradation products and functionalized biochar. Overall, the homogeneous Fenton/adsorption combined process can be potentially used as a treatment to remove azo dyes from contaminated water.

4.
Recent Pat Nanotechnol ; 15(3): 270-294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33596815

RESUMO

BACKGROUND: In past years, nanomaterials have been actively studied and developed and successfully used in many fields. Due to water scarcity, the application of nanomaterials in water and wastewater treatment has drawn significant attention. Due to their superior features, they represent functional materials with great potential for pollution removal and environmental applications. OBJECTIVE: This literature review aims to summarize and present the metal nanoparticles used for dye wastewater treatment. The discussion subject is metallic nanoparticles for mentioned use, with a special focus on iron-based, bimetallic, and photocatalytic nanomaterials. METHODS: Reference search of "metal nanoparticles in dye wastewater treatment" was conducted in detail through the Serbian Library Consortium for Coordinated Acquisition (KoBSON). Published papers search was mainly based on Web of Science and ScienceDirect database focusing on the latest research on this topic. The corresponding literature was carefully read, analyzed, and evaluated. RESULTS: Two hundred and twenty-four scientific and review articles, thesis, and book chapters, patents were evaluated in order to summarise current trends in metal nanoparticle use in wastewater treatment. An increasing trend in scientific research regarding metal nanoparticles can be observed for the removal of different inorganic and organic pollutants. Among the most extensively tested are dye molecules, representing challenging species in terms of degradation and consequent removal. Modification, layering, combination, and green synthesis of metal nanoparticles result in materials capable of efficient and environmentally sustainable wastewater treatment. CONCLUSION: In this paper, an extensive review of metal nanoparticles in dye wastewater treatment is presented. With rapid water demand, the development of sustainable materials and technology is necessary. The use of these materials represents eco-friendly, energy-efficient, and sustainable water purification solutions. However, the matter of usage commercialization is still to be addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...